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Abstract

Survey researchers rely heavily on closed-ended questions to measure latent respondent

characteristics like knowledge, policy positions, emotions, ideology, and various other

traits. While closed-ended questions ease analysis and data collection, they necessarily

limit the depth and variability of responses. Open-ended responses allow for greater

depth and variability in responses, but are labor-intensive to code. Large Language

Models (LLMs) can solve some of these problems, but existing approaches to using

LLMs have a number of limitations. In this paper, we propose and test a pairwise

comparison method to scale open-ended survey responses on a continuous scale. The

approach relies on LLMs to make pairwise comparisons of statements that identify

which statement “wins” and “loses”. With this information, we employ a Bayesian

Bradley-Terry model to recover a ‘score’ on a the relevant latent dimension for each

statement. This approach allows for finer discrimination between items, better mea-

sures of uncertainty, reduces anchoring bias, and is more flexible than methods relying

on Maximum Likelihood Estimation techniques. We demonstrate the utility of this ap-

proach on an open-ended question probing knowledge of interest rates in the US econ-

omy. A comparison of 6 LLMs of various sizes reveals that pairwise comparisons show

greater consistency than zero-shot 0-10 ratings with larger models (> 9-billion param-

eters). Further, comparison of pairwise decisions are consistent with high-knowledge

crowd source workers.1

1Corresponding Author: Matthew DiGiuseppe - mdigiuseppe@gmail.com
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Public opinion scholars and survey researchers are often interested the latent traits of indi-

vidual respondents like political knowledge, literacy, comprehension, engagement, ideology,

emotional reactions, psychological characteristics, and values. Due to convenience, most

scholars use closed-ended questions independently or in a scale to measure these traits.

However, closed-end responses come with several undesirable properties. They introduce

ceiling and floor effects. They can also introduce measurement error from false or inadver-

tent responses, and force an assumption of linearity on scales. Most importantly, they reduce

the richness of responses and often introduce concepts that would otherwise be apparent to

respondents.

Alternatively, open-ended responses offer an unstructured and more flexible alternative

that allows for in-depth and detailed responses that captures substantive uncertainty and

important qualifications. However, open-ended responses have traditionally required costly

human coders before they are usable in statistical analysis (Lazarsfeld, 1944; Geer, 1991;

Converse, 1984; Haaland et al., 2024; Andre et al., 2024; Roberts et al., 2014). Given a large

number of potentially lengthy responses, coding the various dimensions for all respondents

can be labor intensive. More often than not, this process also reduces these high dimension

data to linear discrete scales that reintroduce some issues of closed-ended questions.2

Advances in text as data methods (Roberts et al., 2014) in the past 10-15 years have

opened to door to more automated text analysis. However, these methods are only useful in

certain applications that do not require background knowledge to make judgments. However

they are particularly useful in identifying differences in sophistication or word use among

groups (Kraft, 2024; Zollinger, 2024). Advances in Large Language Models (LLMs) have

significantly reduced the cost of annotating and scaling open-ended questions further (Rathje

et al., 2024; Heseltine and Clemm von Hohenberg, 2024; Mens and Gallego, 2023). Notably,

frontier LLMs come with the added benefit of strong domain knowledge often exceeding the

abilities of crowd workers or undergraduate research assistants (Gilardi et al., 2023; Bermejo

2Beyond cost concerns, scholars have broader methodological concerns. Roberts et al. (2014) provides a
nice discussion of the benefits and limitations of open-ended responses.
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et al., 2024; Ludwig et al., 2024; Ornstein et al., 2025). However, using LLMs in place of

research assistants for scaling responses typically generates unanchored scores, which also

lack corresponding estimates of uncertainty. Further, LLMs vary in their output both across

different LLMs and even across different versions of the same LLMs in classification and

annotation tasks (Barrie et al., 2024). As such, there is still substantial uncertainty as to

the suitability of LLMs for helping survey researchers.

In this paper, we introduce a framework for using LLMs to scale latent dimensions in

open-ended responses with pairwise comparisons. First, researchers prompt an LLM to make

zero-shot, independent pairwise comparisons of two random responses and indicate which

is more closely aligned with the latent concept, or if they are too similar to distinguish.

After collecting N comparisons, researchers use the results of the pairwise comparisons

to fit a Bayesian Bradley-Terry (BT) model to generate a latent variable for respondent

knowledge that we then use to scale and rank the individual respondents (Bradley and Terry,

1952; Davidson, 1970). The estimate of this latent dimension and the error surrounding the

estimate can then be used in subsequent analyses.

Just as in using pairwise comparisons with human raters (Carlson and Montgomery,

2017), LLM pairwise comparisons have several advantages over placement on an ordinal or

discrete scale. Importantly, the approach produces an estimate that can be interpreted as

a position on a latent scale relative to other observations in the dataset rather than the

unanchored responses generated by human and LLM coders prompted to place a statement

on a scale. Next, because of the large-number of pairwise comparisons possible, it is eas-

ier to recover an estimate closer to the true parameter, with smaller errors, even if there

is considerable noise in initial pairwise comparisons. This subsequently allows researchers

to recover more nuanced differences among observations. The credible intervals around the

latent variable estimates can also be used to incorporate the inherent uncertainty associated

with any given observation or measure into subsequent analyses. Further, by forcing a bi-

nary ordering, rather than a ranking, unobserved biases that do not influence rank order of
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pairwise comparisons washes out. Further, as we show below, this approach allows for the

generation of latent estimates of respondent knowledge even when we have sparse compar-

isons, using readily available software, reducing dependence upon customized packages for

estimating pairwise comparison models.

Others have demonstrated the utility of using pairwise comparisons made by crowd source

workers to scale latent concepts in text. Unlike crowd source workers used to make pairwise

comparisons (Carlson and Montgomery, 2017), using LLMs can increase the potential ap-

plication of this approach. LLMs enable pair-wise comparisons on large datasets (that often

exceed N=1000) that would require many coder-hours. Additionally, frontier LLMs have

strong domain knowledge across a variety of subjects—including economics and finance—

which we use in our illustration (Yang et al., 2024; Hultberg et al., 2024). LLMs combined

with pairwise comparisons enable researchers to scale tasks that previously required expert

programmers.

Notably, Wu et al. (2023a) are the first to identify the utility of pairing LLMs with

pairwise comparisons in the evaluation of sentiment in ‘tweets’ in the context of a chain of

thought framework. However, their work does little to validate this approach in comparison

to other prompting strategies, assess performance against a human benchmark or against

closed-ended questions. Further, their approach does little to test the domain knowledge of

LLMs needed to code many concepts embedded in open-ended questions.

Our contribution is to demonstrate the utility of this approach within the realm of open-

ended survey responses and with zero-shot prompting. To do so, we illustrate how pairwise

comparisons can create an indicator of ‘interest rate knowledge’ from an original open-ended

survey question asking respondents how interest rates are set in the United States economy.

We first show that zero-shot pairwise comparisons of LLMs are consistent with those made by

‘close-to-expert’ crowd-source workers. We then demonstrate the benefits of the approach by

comparing the BT estimates to closed-ended responses to show they have strong face validity.

We then demonstrate that the pairwise comparison estimates are not sensitive to the choice
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of LLM, above a certain parameter threshold, and that they produce more consistent results

than pure unanchored rankings from LLMs.

Our application demonstrates the usefulness of the approach and how it performs relative

to zero-shot ratings. It also shows that LLMs are useful beyond sentiment analysis and

classification. The embedded domain knowledge in LLMs can be used, in some cases, in

place of close-to-expert coders. As such, it allows for scaling of concepts that are outside the

reach of student or crowd sourced workers. Importantly, we show that this advantage grows

with the capabilities of LLMs. We end with a discussion of the limitations of the approach

and a warning that survey respondents are also growing more reliant on LLMs.

LLMs & Pairwise Comparisons

The utility of using the embedded knowledge in LLMs to annotate, classify, and scale text

has been widely demonstrated in a variety of social science fields (Heseltine and Clemm von

Hohenberg, 2024; Mellon et al., 2024; Lincan Li, 2024; Gilardi et al., 2023; Törnberg, 2024).

Applications are diverse. Mellon et al. (2024) uses LLMs to code the most important problem

identified in open-ended responses. A number of studies use LLMs to code the sentiment or

other characteristics of tweets or news reports (Gilardi et al., 2023; Törnberg, 2024; Heseltine

and Clemm von Hohenberg, 2024; Ornstein et al., 2025). Others Rathje et al. (2024) use

LLMs to scale emotions in text data (tweets and reddit comments) for psychological research.

They focus largely on identifying sentiment, discrete emotions, and moral foundations.

These contributions demonstrate that LLMs often meet or exceed crowd-source workers

on annotation and scaling tasks. However, these measures still have several well-known

limitations that also apply to human-coded data. First, in scaling tasks, the responses of

LLMs are unanchored. As such, it is not apparent what differentiates the maximum and

the minimum values, or various other items on a scale. Second, LLMs, like the human

mind, are black boxes. There is likely to be unobserved bias that influences scale placement.
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Third, the LLM generated responses do not produce uncertainty estimates. Consequently,

subsequent models can’t discern between differences on a scale that are in fact distinct or

differences that appear distinct but are in fact statistically indistinguishable. Beyond these

issues, the enthusiasm of reducing the cost of dimension reduction is further dampened by

concerns about replicability across LLM models and within models overtime. In a series of

tests, Barrie et al. (2024) show that the variance across and within models across time is

‘unacceptably high.’

Given these issues, can survey researchers feel confident in using LLMs to scale open-

ended questions? LLMs are likely to improve and grow more consistent and their biases

will become more transparent, but until such time researchers are faced with the task of

finding alternative methods for dealing with these issues. Some of the challenges of using

existing models can be improved by using LLMs to make pairwise comparisons of text and

then using these pairwise judgments to generate estimates of the desired latent traits with

a Bradley-Terry model.

Pairwise comparisons are not new to social science research. They have been employed to

measure political sophistication (Benoit et al., 2019), persuasiveness of political arguments

(Loewen et al., 2012), and the dimensions of government actors (Zucco Jr et al., 2019).

In fact, pairwise comparisons are particularly useful for measuring subjective constructs.

Narimanzadeh et al. (2023) demonstrate that, in scaling subjective constructs, using crowd-

sourced pairwise comparisons and than estimating individual scores outperforms majority

voting methods to scaling these concepts.

The approach yields several benefits for survey researchers over traditional scaling tech-

niques. The first is that pairwise comparisons produce a relative assessment of each response.

A well-known measurement issue with scaling text is that the responses are unanchored.3

This means that there is bound to be a lack of clarity on what each value on a scale means

relative to the subjective construct the researcher wants to scale. While training coders can

3By unanchored we mean that coders lack a explicit reference points, or benchmarks that allow them to
differentiate between labels on a scale.
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go some way to alleviating this concern, the problem can not be fully resolved. When using

human coders, biases may also emerge emerging from differences in the order of appear-

ance or variability across coders that have different understandings of the scale. It is still

unclear what problem this poses for LLMs. Conceivably, while prompt instructions remain

constant across one-shot calls, the actual prompt may change based on the added human

written response that is unique to each respondent. As such, it is difficult to know how this

impacts how the LLM places items on a scale across numerous calls. Further, human coders

can eventually converge on an anchor by completing multiple responses assuming that they

consistently apply coding rules. For LLMs this convergence is not easily achieved. Each

zero-shot or even multiple shot calls relies on a new call of the model which entails a ‘clean

slate’ requiring a repetition of instructions. Further, if a long-chain of thought could be

achieved (at increasing cost in input tokens), some worry that LLMs exhibit recency bias

(Peysakhovich and Lerer, 2023). Further, efforts at multi-shot prompting relies on picking

examples in an attempt to anchor scaling. Yet, it remains unclear how the choices of these

examples impact the final dataset given the black box nature of LLMs. In sum, the subjec-

tivity inherent in placing items on scale likely generates error that is not directly observable

to the researcher.

As Carlson and Montgomery (2017) argue, pairwise comparisons help ameliorate this

unobserved bias when using human raters. If one rater tends to rate higher or lower on a

scale, this is irrelevant because the forced comparison requires a single cut point. Where

on the scale an item is placed is not relevant for the final estimate unless it changes which

item “wins” or “loses” a comparison. Similarly, there is concern that LLMs are inconsistent

(Barrie et al., 2024) and thus a similar logic should apply. If different LLMs or differences

in the prompt language (or language within a piped in response) lead to different placement

on a scale based on some characteristic, this should only be relevant when the separate

individual ratings move in opposite directions on the scale and far enough to change the

outcome. As long as any bias moves ratings in the same direction, the bias is irrelevant
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when employing pairwise comparisons. For example, let’s assume that a human coder or

an LLM rates a knowledge response higher (lower) because the grammar and spelling are

flawless (sloppy). This may lead to an higher (lower) score for responses with perfect (flawed)

writing. On a 0-10 scale this might result in real differences in responses that have the same

knowledge but are presented in different ways. In the pairwise comparison framework, this

bias is only relevant if it results in a flip of rank-ordering of the pair changing the winning

response to the a losing response. The bias, therefore, has a higher threshold to meet to

influence inferences in a pairwise comparison outcome relative to simple scaling.

The second benefit of the pairwise comparison approach is that it naturally incorpo-

rates uncertainty into the estimates, allowing us to recognize when observed differences may

not be statistically meaningful. While some items can be clearly distinguished from others

because of real differences, in many cases, the difference between two statements is am-

biguous and should be treated as such. In contrast, a simple rating-based approach may

produce distinctions that are seemingly meaningful as a one-point difference on a 10-point

scale—that downstream models might treat as reliable information. By explicitly incorpo-

rating uncertainty into subsequent analyses (Blackwell et al., 2017), we reduce the risk of

over-interpreting these minor, potentially irrelevant differences, by incorporating information

of uncertainty.

A third benefit of pairwise comparisons approach is that it makes use of fine grained

and nuance differences in a way that are difficult to implement with a fixed-scale. Nuanced

differences are difficult to map on a scale without placing large cognitive demands on human

raters and potentially exaggerates measurement bias with LLMs (Benoit et al., 2019). Con-

sider that the cognitive demands needed to determine the difference between a 65 and 66 on

a 100-point scale with out a clear reference point or, from the perspective of a human rate,

multiple cases that were coded previously. Then consider the difficulty of determining which

statement is ‘better’ than the other even if the difference is nuanced. The later is inherently

easier and quicker to assess. Similarly, LLMs, while frequently impressive, may have a sim-
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ilarly hard time making consistent judgments on a large scale given it would be difficult to

have clear instructions for differences on a scale that would allow for fine grained differences.

By reverting to multiple pairwise comparisons, LLMs, like humans coders, can be utilized

to produce fine grained differences among observations with pairwise comparisons.

Until recently, pairwise comparisons have drawn on crowd workers, students, or experts

to make comparisons. While the benefits of pairwise comparisons are clear from a measure-

ment perspective (Carlson and Montgomery, 2017), the cost of employing crowd-workers

or RAs to engage in numerous pairwise comparisons is likely responsible for its infrequent

adoption. LLMs easily remedy this concern. Scholars have demonstrated that the embedded

knowledge of LLMs is sufficient to carry out these comparisons with significantly lower cost.

For example, Wu et al. (2023b) use LLMs pairwise comparisons to recreate latent ideology

scores of US Senators. They provide LLMs with only the Senators names and prompting

LLMs to indicate which is more liberal, conservative, supportive of gun rights, etc without

providing any additional text. The estimates generated from these comparisons map nicely

on to the often used DW-NOMINATE scores (Poole and Rosenthal, 2000). Di Leo et al.

(2024) use a similar approach to estimate the ideology of European parties. The expertise of

LLMs extends beyond political judgments. LLMs have consistently demonstrated a strong

embedded knowledge of economic and psychological concepts.

In sum, LLMs have the embedded knowledge to replace expert coders in classification

and scaling tasks. However, they are often used in a way that fails to address the subjectivity

of rankings and lacks a measure of corresponding uncertainty. Below, we show that pairwise

comparisons offer a better alternative to scaling approaches and can be done with reasonable

costs. However, we also show where they may fail to produce acceptable data.
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Pairwise Comparison Work Flow

Figure 1 outlines the workflow to take individual open-ended responses and create estimates

to be used in subsequent analyses. After collecting open-ended survey responses, researchers

first create pairs of responses. In our analysis, we started with each response and randomly

paired it with 20 responses from the dataset without replacement. Once the pairs have been

assigned, researchers must develop a prompt that a) clearly outlines the task the LLM will

perform, provides each of the open ended responses, and requests a response to identify which

response best aligns with the concept or if they are indistinguishable. The prompt can then

be used in calls to an LLM API or, for smaller models, run locally. Once the LLM returns

the judgments, a Bradley-Terry (BT) model can be fitted to the responses.4 Following the

estimation of the BT model, we retrieve the median estimate and the errors. If the researcher

is interested in using the estimates in downstream analyses either as an outcome or predictor

then the posterior distributions from the Bradley-Terry models can be incorporated into

subsequent analyses as needed, thereby allowing the researcher to incorporate the uncertainty

from the Bradley-Terry models directly into additional models.

Collect responses
Create pairwise
comparisons

Prompt LLM
to compare
each pair of
responses and
code winner

Estimate
Bradley-Terry
(BT) model

Retrieve median
scores, standard
errors, and/or
full posterior
distribution

Incorporate into
downstream
analyses
as needed

Figure 1: Workflow Diagram of the Estimation Process

4If you ask the LLM to code ties, you can simply recode a winner randomly (as we do here) or instead
fit a Bradley-Terry-Davidson model (Davidson, 1970) that accommodates ties.
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MLE or Bayesian Estimation?

Once we have obtained the paired responses the LLM will make judgments about the domain

knowledge contained within each response. The instructions ask the LLM to decide if 1)

response #1 wins, if response #2 wins, or if the two responses are equivalent (i.e. a tie).

Once we have the scores for each of the pairwise comparisons we can then fit a Bradley-Terry

model to generate a latent variable capturing the underlying trait the researcher cares about

(e.g. knowledge, emotion, etc.).

Traditionally Bradley-Terry models have been fit with Maximum Likelihood Estimation

(MLE) methods. Here we adopt an alternative Bayesian framework. While others have

utilized Bayesian methods for estimating similar models the approach is not yet widespread

(see Carpenter, 2018; Mattos and Ramos, 2022; Kaye and Firth, 2022; van Paridon et al.,

2023). The Bayesian approach has several desirable properties relative to traditional MLE

approaches. First, MLE methods can be fast, but the researcher’s ability to use MLE rests

on the assumption that they have pairwise comparisons for all possible items or responses

(Mattos and Ramos, 2022; Kaye and Firth, 2022). Where the researcher does not have

pairwise comparisons for every item, MLE methods will fail to converge. Sometimes this is

within the researcher’s control, but in many cases the researcher may not be able to generate

a complete list of comparisons.

Further, in cases where the number of items to be ranked is very large, MLE methods

may struggle with the computational complexity. Alternatively, while Markov Chain Monte

Carlo sampling methods may sometimes run more slowly, they are able to generate estimates

of the desired parameters even in cases where there are a large number of items to rank, and

where not every item is paired with every other item. However, modern software for fitting

Bayesian models, like Stan and its Hamiltonian Monte Carlo sampling procedures, have

greatly reduced the time it takes to fit even more complex Bayesian models. Where speed

might still be an issue, the choice to reduce the number of pairwise comparisons can still

save the researcher time, though at the expense of larger errors in the posterior distributions
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of the latent parameters.

Bayesian approaches also provide us with several options for dealing with the inherant

uncertainty associated with the latent estimates derived from the Bradley-Terry models.

Packages like brms include functions like me() that can be used to account for measurement

error in particular predictors. Alternatively, researchers can simply sample from the poste-

rior distributions of the Bradley-Terry estimates and run multiple iterations of downstream

models to directly incorporate the uncertainty into their estimates.

Finally, while there are several R packages that can estimate Bradley-Terry Models, many

rely on MLE for estimation, or they may depend upon package maintainers to keep functions

updated and working.5 The approach we outline here demonstrates how researchers can

use Stan and brms to estimate Bradley-Terry models as multimembership mixed effects

models. Depending on the structure of the pairwise comparison data, these models can be

estimated using binomial or logistic regression and are generally easy to fit without relying on

customized Bradley-Terry packages (for example see Firth, 2005; van Paridon et al., 2023).

Illustration: Scaling Economic Knowledge

To demonstrate the utility of the approach, we draw on data collected by DiGiuseppe et al.

(2024) that measures knowledge about monetary policy. The data, collected on the Prolific

platform, prompted respondents with the following question: “In a few sentences and without

looking it up, can you explain how interest rates (i.e. the cost of borrowing money to buy a

house or car) go up or down in the US economy?”.6 Respondents were asked to reply in 2-3

sentences. The aim of the study is to explore how knowledge about interest rates influences

individual assessment of the Federal Reserve and support for its independence. This dataset

5Examples include the BradleyTerry, BradleyTerry2, BradleyTerryScalable, and bpcs packages.
For more information see Firth (2005); Turner and Firth (2012); Kaye and Firth (2022); Mattos and Ramos
(2022).

6Respondents were asked at two points later in the survey if they looked up the answers to knowledge
questions. We removed those that confirmed they sought assistance from the data. We discuss below that
we found several respondents used LLMs to answer the open-ended questions.
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is useful, for our purposes, in that it collects both open and closed-ended questions relating

to knowledge of the Federal Reserve and that it is a potentially difficult task for both human

coders and LLMs.

We carry out this exercise with LLMs of various sizes and a mix of proprietary and open-

source models (see Table 1). The use of multiple models is useful for testing the limits of

the approach and to compare the consistency across models. These models include frontier

LLMs (GPT-4o, GPT-4o Mini, Llama 3.1:405b) and two smaller large language models,

Llama 3.1:7b and Google’s Gemma2:2b and Gemma2:9b. We use API calls for the OpenAI

models and the Large LLama 3.1 model. We run the smaller models locally using Ollama

and the the R package ‘rollama’ to call on llama 3.2 locally (Gruber and Weber, 2024) on

an Apple Macbook with an M3 Pro chip and 36GB of memory.

Model Parameters Open Access Proportion Transitivity
Source Ties Score

LLaMA 3.1:405B 405 Billion Yes API 0.024 99.1
GPT-4o Not specified No API 0.009 96.1
GPT-4o mini Not specified No API 0.040 96.7
LLaMA 3.1 8B 8 Billion Yes Local 0.062 96.0
Gemma:2B 2.6 Billion Yes Local 0.297 94.6
Gemma:9B 9 Billion Yes Local 0.065 98.2

Table 1: Properties of LLMs used in Illustration

In line with the workflow we described above, we paired each response with 20 other

randomly selected responses, ensuring that responsei ̸= responsej. This results in approxi-

mately 30–40 total comparisons for each response as any given respondent appears 20 times

as responsei and anywhere from 7 to 33 times as responsej. In total this yields a little over

30,000 total comparisons or lines in the data. Following the workflow, we prompt each LLM

with the following prompt:
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Pairwise Comparison LLM Prompt

“You are an expert in US economic policy. Your task is to determine which of two

given statements contains a more knowledgeable response to the following question:

”In a few sentences and without looking it up, can you explain how interest rates (i.e.

the cost of borrowing money to buy a house or car) go up or down in the US economy?

Respond with either ’1’ if the first statement contains more knowledge, ’2’ if the second

statement contains more knowledge, or ’0’ if they are equal or incomparable. Compare

these two statements and respond with 1, 2, or 0:”, 1: [Statement 1], 2: [Statement

2]. Only reply with the integer 1, 2, or 0”

Table 1 shows that there are relatively few ties in most models. Although the smallest

model appears to be less decisive, finding that 30% of all comparisons are tied. Beyond the

ties, we see that the LLMs show consistency in their judgements. We examined the consis-

tency of judgments across triplets where we had judgments for A, B, and C and examined

how often there was a violation of transitivity. We see that no model is perfect. Yet, the

transitivity scores ( [total triplets - triplets with violations] / [total triplets]) demonstrate

strong consistency.

Once we have the LLMs’ judgments for these 30,000+ comparisons, we estimate a

Bradley–Terry Model for the comparisons of each LLM. The first step is to resolve any

ties in the data. Resolving these ties can be handled in a variety of ways, but here we simply

randomly assign wins between the two options.

Once the ties are resolved we fit a Bradley-Terry model to estimate the following:

Pr(i beats j) = δi − δj (1)

The data are organized with two columns for respondenti and respondentj wherein the

values in each vector correspond to an individual respondent ID number. A third column

contains a binary indicator denoting whether or not respondenti won the comparison, with
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a 1 indicating yes and a 0 otherwise.

Rather than using a customized package to estimate the Bradley-Terry Model, we fit a

multi-membership mixed effects logit model using the brms package and Stan programming

language (Bürkner, 2017, 2018; Stan Development Team, 2024; Gabry et al., 2024).

The model is simply a varying intercept model wherein we estimate separate intercepts

for each individual respondent. Each pairwise comparison is simply subtracting the varying

intercept for respondentj from respondenti, as shown in Equation 1. Once each model is

run we obtain varying intercept estimates for each individual respondent that allow us to

rank order them according to their knowledge and ability to accurately answer the questions

posed.7

Human-LLM Comparison of Comparisons

Our own prompting indicates that LLMs have a good understanding of the central process of

setting interest rates. Beyond this, there is some indication that LLMs have strong domain

knowledge in economics and finance but systematic evidence is limited (Yang et al., 2024;

Hultberg et al., 2024). As such, we validate the LLMs against human coders in this specific

task.

To create a human benchmark on a topic that most have limited understanding of, we

recontacted 20 respondents from our original sample that offered an expert-level answer on

our initial survey. Based on the results of the LLM ratings, we selected the top-20 responses

in terms of knowledge. We then reviewed those responses to verify that they in fact provided

an ‘expert-level’ response to the question on interest rates. We then recontacted these crowd-

workers, via the Prolific Platform, and asked them to take part in a pairwise comparison

exercise to rank several 20 pairs of responses randomly drawn from our dataset.8 We ended

up with 300 pairs of human rated pairwise comparisons. We then prompted the LLMs to

compare these same pairs. Both Humans and LLMs were provided similar prompts.

7When estimating the models we use broadly regularizing priors to facilitate model convergence.
8As we note below, we screened out those that have used LLMs themselves.
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Figure 2: Comparisons Human-LLM - F1 Score: This figure reports the F1 score for
Human-LLM comparisons of a subset of the original dataset of 300 pairwise comparisons.

Figure 2 reports the F1 score comparing the human raters with the LLMs for the small

set of responses coded by the human coders.9 The frontier models (GPT4o, GPT4o mini,

and LLaMa 3.1:405B) achieve an F1 score above 0.8 compared to human coders, indicating a

strong alignment with human assessments. The smaller models generate mixed results with

Gemma: 7B and Gemma: 2b providing strong scores and Llama 3.1: 8b lagging behind.

The F1 should be interpreted in context. In this exercise, we asked the respondents to select

the profile with a “small preference” rather than indicate a tie to ease interpretation. Many

of the human responses are going to have similar levels of knowledge. As such, there are

likely to be a high level of ambiguous cases in the dataset. Compared to classification tasks

which may have clearer borders between cases, the task here will naturally lead to more

disagreement. Still, we find a strong F1 score. This gives us confidence that the underlying

task generating the data is one that is well handled by LLMs.

9The F1 score reports a balance between the model’s precision (correctness of its positive predictions) and
recall (ability to identify all positive instances), representing a combined measure of the model’s accuracy

on the positive class. F1 Score = 2 ×
(

Precision×Recall
Precision+Recall

)
. Recall = True Positives

True Positives+False Negatives . Precision =
True Positives

True Positives+False Positives .
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Comparison with Closed Ended Responses

Thus far, we’ve seen that the pairwise comparison approach is well-suited for frontier models

and the underlying task of comparisons is closely related to human decision making. We

take an additional step to compare the estimates within respondent by comparing our BT

estimates of individuals respondents to their own responses on closed-ended questions in the

same survey. We compare these responses with the BT estimates derived from the pairwise

comparisons of the largest open-source model, Llama 3.1 with 405 Billion parameters given

we have a preference for open-source models.

In Figure 3, we plot the BT estimates in order but classify them based on how a respon-

dent responded to the question “How familiar are you with the following US institution:

The Federal Reserve”. We see, in line with expectations, that the those that “have a fairly

accurate idea of the duties of the institution” and “have an approximate idea of the du-

ties of the institution” score higher on the scale. Those that “only know the institution by

name” or “don’t know” the institution rank consistently lower on the scale. Next, we turn

to factual questions about the Federal Reserve. Given the large role of the Federal Reserve

in setting interest rates, knowledge about the institutional structure of the Federal Reserve

should be strongly related to knowledge about interest rates. Figure 4 presents the mean

BT estimate by correctness of three factual questions in which respondents had to pick the

correct answer from 4 choices. We see that those who could not identify which institution

in the US government sets interest rates, who appoints the Fed. Chair, and those who could

not identify the Fed Chair have significantly lower BT estimates. This gives us confidence

that the BT estimates align with the the underlying construct - knowledge about the Federal

Reserve and Interest Rates.

Comparing LLMs

We now proceed to compare the final BT estimates from the pairwise comparisons of each

LLM. First, Figure 5 plots the 95% credible intervals around each respondent’s latent es-
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Figure 3: BT Estimates by Self Reported Knowledge of the Fed: Here we randomly
selected 200 responses (for visibility) and plot the BT estimates in order of knowledge. The
error bars of the estimates are colored based on responses to query about a respondents self
reported knowledge of the Federal Reserve.

Figure 4: Mean BT Estimate by Correct and Incorrect Answers to Factual Questions about
the Fed
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timate from each of the 6 models. In each figures, we sorted latent estimates according to

the median of their posterior distributions from the lowest to highest respondent knowledge

ability within each model. The plots demonstrate a similar pattern across all but the small-

est model. Further, we see that smallest model, Gemma 2:2B, has a smaller range of values,

indicating that it has a more difficult time distinguishing “winners” from “losers”. This

corresponds with the greater number of ties Gemma2:2B identified.

The plots can show us the general distribution of the latent estimates but can’t tell us if

these distributions correlate. That is, do individual respondents who score high/low in the

models from one LLM score similarly high/low in the models from a different LLM? Table 2

presents the correlations of the final BT scores for each model. Outside the smallest model,

Gemma 2:2B, we see that the final correlation of all model’s scores exceed 0.877. Correlation

among the largest models (GPT4o and Llama 3.1:405B) exceeds 0.95. This suggests that,

with this specific task, the LLMs are largely in a agreement about what constitutes a highly

knowledgeable answer.

Table 2: Correlation of BT Estimates of Pairwise Comparisons by LLM

Gemma 2:2B Gemma 2:9B GPT 4o mini GPT 4o Llama 3.1:405B Llama 3.1:7B

Gemma 2:2B 1.000 0.702 0.647 0.619 0.625 0.702
Gemma 2:9B 0.702 1.000 0.925 0.914 0.927 0.894
GPT 4o Mini 0.647 0.925 1.000 0.928 0.951 0.907
GPT 4o 0.619 0.914 0.928 1.000 0.953 0.877
Llama 3.1:405B 0.625 0.927 0.951 0.953 1.000 0.902
Llama 3.1:7B 0.702 0.894 0.907 0.877 0.902 1.000

For comparison, we also prompted our LLMs to engage in zero-shot numerical ratings

of individual statements. We asked each LLM to place each statement on scale reflecting

the knowledge about interest rates from completely incorrect or irrelevant (0) to highly

knowledgeable and accurate (10).10 Figure 6 plots the distribution of these results and Table

10The prompt reads as follows: “You are an expert in US economic policy. Your task is to rate the given
statement on a scale of 0-10 based on how knowledgeable it is in response to the following question: In a few
sentences and without looking it up, can you explain how interest rates (i.e. the cost of borrowing money to
buy a house or car) go up or down in the US economy? Rate the following statement on a scale of 0-10, where
0 is completely incorrect or irrelevant, and 10 is highly knowledgeable and accurate: [statement]. Respond
ONLY with a single integer from 0 to 10, with no additional text.”
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Figure 5: Bayesian Bradley-Terry Estimates of Interest Rate Knowledge by LLM.
Each panel plots the 95% credible interval for the posterior distributions for each respondent
in our dataset. Items are sorted highest to lowest within each panel.
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Table 3: Correlation of 0-10, One-shot, Ratings by LLM

Gemma 2:2B Gemma 2:9B GPT 4o mini GPT 4o Llama 3.1:405B Llama 3.1:7B

Gemma 2:2B 1.000 0.877 0.819 0.769 0.838 0.737
Gemma 2:9B 0.877 1.000 0.903 0.847 0.920 0.784
GPT 4o mini 0.819 0.903 1.000 0.882 0.911 0.731
GPT 4o 0.769 0.847 0.882 1.000 0.846 0.711
Llama 3.1:405B 0.838 0.920 0.911 0.846 1.000 0.779
Llama 3.1:7B 0.737 0.784 0.731 0.711 0.779 1.000

Table 4: Note: The table shows correlation of the results of a prompt asking each LLM to
rate the knowledge of the statement on a 0-10 scale. The temperature in each model was set
to ”0”. N= 1402.

Figure 6: Distribution of Ratings: This figures presents the distributions of the 0-10
ratings of interest rate knowledge for each of the LLMs (N=1402).

3 presents the correlations of these ratings. Several things stand out. First, we see that while

many of the models are given range of values to place a statement, they rely on a fraction

of those. As such, zero-shot ratings may inherently limit the nuance of their output and

thus miss key distinctions in between responses. This also gives further pause as it appears

the patterns do not follow an apparent logic. It suggests that a inherent bias is selecting

some numbers over others. Next, we see that among the largest 2 LLMs the correlation is

high but not as high as the BT estimates. In theory, GPT4o and Llama 3.1:405B should

have the most consistent responses. However, the correlation is only 0.846, compared with
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Figure 7: Coefficient of Interest Rate Knowledge on Support for Central Bank In-
dependence: Both panels plot the standardized coefficients for of ‘interest rate knowledge’
in a linear model predicting support for central bank independence for each of the LLMs
used in our analyses. Each model also includes controls for income and education. The left
plot relies on a 0-10 one shot rating on knowledge

0.953 in the BT estimates. Among the smaller LLM ratings, we see a substantially higher

correlation with both smaller and larger LLMs. At least when it comes to our task here,

the pairwise comparison task appears well suited for use with larger LLMs but provides

inconsistent results with models of lesser capabilities. In this domain, a simpler rating task

produces more consistency.

The last step in our workflow is to draw from the distribution of Bradley Terry estimates

and use a multiple (over)imputation framework to recover an aggregate estimate that in-

corporates the uncertainty in the latent variable. Here we use our latent variable, interest

rate knowledge, as a predictor of support for central bank independence. The basic intuition

is that when people have more knowledge about how and who sets the base interest rate

they are more likely to favor independence. As such, we estimate linear models that include

interest rate knowledge plus potential confounders: education and income. The right panel

of Figure 7 presents the standardized coefficients of interest rate knowledge for each the
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LLM derived latent variables. For comparison, we also plot the standardize coefficients of

similar linear models for the zero-shot 0-10 ratings in the left panel. As we can see, the

two approaches return point estimates of similar sizes. Yet, as expected, once we consider

the uncertainty around the latent variable, the confidence intervals around the coefficient

are considerably larger. Depending on the underlying LLM comparisons, this can result in

the difference between a significant or insignificant result. The comparison nicely illustrates

the potential consequences of relying solely on one-shot numerical ratings in downstream

models.

Scope and Limitations

The framework presented here demonstrates that LLMs can be useful for scaling open-ended

questions and that pairwise comparisons have several advantages over simply prompting an

LLM to place a statement on a ordinal scale. We show that, at least when it comes to this

task, LLMs’ pairwise judgments correspond closely to expert or near-expert human coders,

there is high agreement among different LLMs, and they outperform numerical ratings.

While the method is useful, it does have several limitations. First, researchers must be

able to identify and phrase a question that will reveal the latent dimension of interest. Some

concepts may still be better probed in the context of discrete factual questions. While others

might benefit from a longer exposition. Given that the domain knowledge and capacities of

LLMs have not been fully tested, it is still necessary to validate the use of LLMs with high

quality benchmarks (Gilardi et al., 2023).

Second, some concepts may be easier to identify than others. We carried out an additional

illustration (found in our Supplementary Appendix) in which we asked an LLM to identify

‘uncertainty’ in respondents expectations of the economic consequences of government action.

In this exercise, we see less agreement across the different LLMs. However, the method still

produces more consistent output than numerical ratings. Consequently, researchers should
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do their due diligence to demonstrate that LLM output is consistent across and within models

and that the findings are not dependent on the judgments of a single LLM.

Third, the ability of various LLMs to accurately and consistently evaluate the factual

content of respondent answer depends on the integrity of the underlying LLM model and

training data. If a given LLM cannot “retain“ a piece of factual information then its ability

to evaluate how factual a given response is will likely not be stable over time (Khatun

and Brown, 2024). Other factors, like the framing of questions/prompts or the inclusion of

extra or unnecessary language in prompts, can produce incorrect responses. Similarly, while

multiple LLMs may rank particular options as the most likely correct responses, it is difficult

to assess the degree of confidence or uncertainty across various LLMs, or how stable they

are over time (Wang et al., 2024).

Finally, LLMs may potentially bring new life to the use of open-ended questions in survey

research. However, they also bring risks beyond the structural and mechanical problems of

the LLMs themselves. The increasingly widespread use of LLMs for completing various user

tasks may interfere with efforts to collect user knowledge from surveys. We were suspicious

that several of the open-ended responses from our Prolific respondents were themselves

generated by LLMs. To explore this further, when we recontacted respondents to serve

as our human benchmarks we again asked them to answer the question about interest rates.

This time, we hid an additional request in the html in very and small transparent font. We

asked that the response “mention Alan Greenspan”. This served the purpose of providing

a very specific instruction that is unlikely to be included without prompting but also one

that would not arise too much suspicion if read by the human pasting in to the survey. We

found that 5 of our top 20 respondents were using AI to answer the open-ended question. We

removed these responses from the final dataset. While the use of LLMs by survey respondents

were not detrimental to our analysis, it does show that respondents may rely on LLMs for

cognitively demanding tasks like open-ended questions. Further, the prospect of AI agents

completing surveys on their own raise the risk that entire survey forms will be completed by
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AI. Consequently, survey researchers, whether using open or closed questions, should design

strategies to identify these responses and drop them from the dataset.
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Mattos, David Issa and Érika Martins Silva Ramos (2022). Bayesian paired comparison with

the bcps package. Behavior Research Methods 54, 2025–2045.

Mellon, Jonathan , Jack Bailey, Ralph Scott, James Breckwoldt, Marta Miori, and Phillip

Schmedeman (2024). Do ais know what the most important issue is? using language

models to code open-text social survey responses at scale. Research & Politics 11 (1),

20531680241231468.
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A Appendix

A.1 Chain of Thought Prompting

In addition to asking an LLM to return just a final answers on which statement best aligned

with the latent dimension of interest (knowledge), we also attempted a Chain of Thought

(CoT) pair-wise comparison prompting approach following the recommendation of (Wu et al.,

2023a). We used the following prompt with the llama 3.1:405B model:

”You are an expert in US economic policy. Your task is to determine which of two given

statements contains a more knowledgeable response to the following question:”, ”In a few

sentences and without looking it up, can you explain how interest rates (i.e., the cost of

borrowing money to buy a house or car) go up or down in the US economy?”, ”Follow these

steps to complete the task:”, ”Step 1: Write out your evaluation of Statement 1, discussing

its strengths, weaknesses, and gaps in knowledge.”, ”Step 2: Write out your evaluation

of Statement 2, discussing its strengths, weaknesses, and gaps in knowledge.”, ”Step 3:

Compare your evaluations of the two statements and explain which one demonstrates greater

knowledge, or why they are equal or incomparable.”, ”Step 4: Based on your reasoning,

provide your final decision.”, ”Your response should include the full reasoning for each step,

and the final decision must be presented as:”, ”Final Decision: [1] or Final Decision: [2]

or Final Decision: [0]”, ”Here are the statements to evaluate:”, ”1:”, [statement1], ”2:”,

[statement2], ”Write out your full evaluation and conclude with the final decision in the

specified format.”

We find, contrary to our expectations, that the CoT prompt performed worse than the

direct prompt against the “close to expert” benchmark. As such, we present only the direct

prompt in our central analysis.
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Figure A1: F1 - LLM-Human Comparison including Chain of Thought prompt
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A.2 Additional Illustration: Uncertainty

In addition to the illustration above, we also applied our framework to an experimental

setting where the variable of interest is a dependent variable. In a forthcoming paper,

DiGiuseppe and Shea (ming attempt to manipulate respondents’ uncertainty over the con-

sequences of a Debt Ceiling breach in the run-up to the 2023 Debt Ceiling deadline in the

United States. Figure ?? presents the images in the experiment. As a manipulation check,

the authors asked respondents to report their expectations of what would happen if the US

breached the debt ceiling. In their appendix, the authors used and LLM to rate the uncer-

tainty of each response on a 0-10 scale and find that those in the treatment condition did,

in fact, produce statements with greater uncertainty. Here, we apply a pairwise comparison

approach to this analysis.

The figures and tables in this section indicate a few things. First, there is much less

consistency in the model output in this task. The correlations are much lower among both

the BT estimates and the 0-10 rankings. The BT estimates appear to be more consistent

among the high-end models. Among the 3 frontier models (LLama 3.1:405B, GPT4o and

GPT4o mini), the correlation of the final output ranges from 0.59 to 0.82. Still, this may be

too low to have confidence in any particular model for this task.

Table A1: Correlation of BT Estimates Uncertainty by LLM

Gemma 2:2B Gemma 2:9B GPT 4 0 Mini GPT 4 0 Llama 3.1:405B Llama 3.1:7B

Gemma 2:2B 1.00 0.55 0.23 0.06 -0.19 0.55
Gemma 2:9B 0.55 1.00 0.72 0.58 0.24 0.80
GPT 4 0 Mini 0.23 0.72 1.00 0.82 0.59 0.70
GPT 4 0 0.06 0.58 0.82 1.00 0.77 0.49
Llama 3.1:405B -0.19 0.24 0.59 0.77 1.00 0.19
Llama 3.1:7B 0.55 0.80 0.70 0.49 0.19 1.00
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Figure A2: Control Figure

Figure A3: Treatment Figure

Figure A4: DiGiuseppe and Shea’s (2025) Treatment Conditions

Table A2: Correlation Matrix of LLM 0-10 Ratings

Gemma 2:2B Gemma 2:9B GPT 4o mini GPT 4o Llama 3.1:405B Llama 3.1:7B

Gemma 2:2B 1.000 0.288 0.374 0.451 0.487 0.362
Gemma 2:9B 0.288 1.000 0.297 0.360 0.313 0.273
GPT 4o mini 0.374 0.297 1.000 0.566 0.632 0.548
GPT 4o 0.451 0.360 0.566 1.000 0.587 0.434
Llama 3.1:405B 0.487 0.313 0.632 0.587 1.000 0.620
Llama 3.1:7B 0.362 0.273 0.548 0.434 0.620 1.000
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Figure A5: Bayesian BT Scores of Uncertainty
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Figure A6: Distribution of Uncertainty 0-10 Ratings by LLM

Figure A7: ATE of treatments based on LLM codings of ‘Uncertainty DV’: The
point estimates indicate the average treatment effect and bars indicate the 95% confidence
intervals.

36


	Appendix
	Chain of Thought Prompting
	Additional Illustration: Uncertainty


